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Subcritical transition in a flat-plate boundary layer is examined experimentally through 
observing its nonlinear response to energetic hairpin eddies acoustically excited at the 
leading edge of the boundary-layer plate. When disturbed by the hairpin eddies 
convecting from the leading edge, the near-wall flow develops local three-dimensional 
wall shear layers with streamwise vortices. Such local wall shear layers also evolve into 
hairpin eddies in succession to lead to the subcritical transition beyond the x-Reynolds 
number R, = 3.9 x lo4, where the momentum thickness Reynolds number R, is 127 for 
laminar Blasius flow without excitation, and is about 150 under the excitation of 
energetic hairpin eddies. It is found that in terms of u- and u-fluctuations, the intensity 
of the near-wall activity at this critical station is of almost the same order as or slightly 
less than that of the developed wall turbulence. The development of wall turbulence 
structure in this transition is also examined. 

1. Introduction 
Laminar to turbulent transition in a boundary layer strongly depends on the 

disturbance environment. Under low background turbulence, transition in Blasius flow 
is initiated with the spatial (convective) growth of viscosity-conditioned Tollmien- 
Schlichting waves at Reynolds numbers far beyond the critical value for the linear 
instability. A number of laboratory and numerical experiments have documented the 
process by which the wave growth leads to the breakdown into wall turbulence through 
a sequence of flow instabilities, i.e. the secondary instability (see the reviews by Herbert 
1988 ; Bayly, Orszag & Herbert 1988 ; Kachanov 1994), the high-frequency secondary 
(or tertiary) instability (Klebanoff, Tidstrom & Sargent 1962 ; Kovasznay, Komoda & 
Vasudeva 1963; Hama & Nutant 1963; Nishioka, Asai & Iida 1980) and the final 
breakdown of near-wall shear layers (Nishioka, Asai & Iida 1981; Nishioka & Asai 
1984; Fasel 1990; Sandham & Kleiser 1992). In contrast to the well-documented 
transition under a low turbulence level, we have little information on the possible 
subcritical boundary-layer transition due to high-intensity (nonlinear) disturbances. 
Our knowledge on the response of a boundary layer to nonlinear strong disturbances 
at subcritical Reynolds numbers is crucial in understanding, for example, the 
attachment-line contamination on a swept wing (e.g. Gaster 1967; Poll 1979). 

In plane Poiseuille flow which has almost the same instability and transition 
characteristics as Blasius flow (Nishioka, Iida & Ichikawa 1975; Nishioka et al. 1980; 
Asai & Nishioka 1989), the subcritical transition can be observed at Reynolds numbers 
of around 1000 (based on the channel half-depth and the centreplane velocity) when 
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the inlet flow is highly disturbed; see Carlson, Widnall & Peeters (1982) and Nishioka 
& Asai (1985). Experiments by Henningson & Alfredsson (1987) and Klingmann 
(1992) and numerical simulations by Henningson & Kim (1991) also reveal that a 
turbulent spot may develop from localized nonlinear disturbances at such low 
Reynolds numbers. Thus, the Reynolds number for possible transition in plane 
Poiseuille flow is lower than the critical Reynolds number for the linear instability 5772 
(Orszag 1971). More importantly, the minimum transition Reynolds number in plane 
Poiseuille flow is about 130 and 330 in terms of the Reynolds number based on the 
momentum thickness and displacement thickness respectively. So, since the critical 
Reynolds number calculated from the linear stability theory (the parallel-flow theory) 
for Blasius flow is respectively 200 and 520 (based on the momentum thickness and 
displacement thickness respectively), there is a high possibility of the occurrence of 
subcritical transition in Blasius flow too. Indeed, Morkovin (1988) reported that a 
turbulent wedge developing from an isolated roughness may grow with the occurrence 
of wall burst around the critical Reynolds number for the linear instability. 

According to our previous study on ribbon-induced transition in plane Poiseuille 
flow (Nishioka et al. 1981; Nishioka & Asai 1984), at the later stage of the high- 
frequency secondary instability (or the multi-spike stage) intense shear layers developed 
close to the wall, being associated with the passage of hairpin eddies (which 
successively developed from the high-shear layer away from the wall) and then the wall 
shear layers themselves seemed to evolve into hairpin eddies. At that stage, the mean 
flow exhibited a log-law velocity distribution, so the almost periodic flow we observed 
was judged to be very close to the turbulent stage. In the present experiment on the 
subcritical transition in Blasius flow, we try to realize the flow stages similar to the 
spike stages, near the leading edge of a boundary-layer plate, by applying a periodic 
acoustic forcing. This approach also enables us to obtain much information on the 
mechanism of wall turbulence generation through observing the wall turbulence 
structures when they first appear. 

The successive occurrence of hairpin-shaped vortices from the wall shear layer has 
also been observed in the growth process of a turbulent spot. For instance, Matsui’s 
(1980) experiment on the development of a turbulent spot clearly showed that the 
successive generation of hairpin eddies leads to the growth of the spot. Acarlar & Smith 
(1987a, b) examined the response of the boundary layer to hairpin eddies developing 
from a hemisphere on the wall by using flow visualization techniques, and suggested 
that the successive growth of hairpin eddies was responsible for the wall turbulence 
generation. The regeneration process of hairpin eddies was also examined in detail by 
Smith et al. (1991) and Haidari & Smith (1994). 

In the following, we investigate the response of a flat-plate boundary layer to 
energetic hairpin eddies excited at the leading edge to clarify the possibility of the 
subcritical transition and the related critical condition. Some preliminary results of the 
present experiment were presented briefly in Asai & Nishioka (1990). 

2. Experimental set-up and procedure 
The experiment is conducted in a wind tunnel with an open jet, 200 mm x 200 mm 

in cross-section. A schematic of the test section is illustrated in figure 1. A flat plate set 
in the test section is 600 mm long, 3 mm thick and 195 mm in span, and has a sharp 
leading edge. A pair of large Plexiglas sidewalls maintain the two-dimensionality of the 
mainstream. To excite vortices at the leading edge acoustically, a loudspeaker with a 
30 cm woofer is used. The forcing current is supplied by a sine-wave generator through 
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FIGURE 1. Schematic of the test section (dimensions in mm). 

a power amplifier. The sound is radiated almost perpendicularly to the boundary-layer 
plate, and therefore can cause local unsteady flow separation at the sharp leading edge 
to excite discrete vortices there, as will be shown in detail in the next section. It should 
be noted that the areas above and below the plate are open to avoid possible acoustic 
resonance. As will also be seen in the next section, thin plastic tapes of 0.05 mm thick 
and 3mm wide are glued around the leading edge every 6mm in the spanwise 
direction, to control the three-dimensional distortion of the discrete vortices excited. 
The coordinate system is as follows: the x-axis is in the streamwise direction (measured 
from the leading edge), the y-axis is normal to the upper surface of the plate and the 
z-axis is in the spanwise direction. 

A constant-temperature hot-wire anemometer (with linearizer) is used to measure 
the time-mean and fluctuation velocities in the x-direction, U and u. The sensitive 
length of the hot wire (a tungsten wire of 5 pm in diameter) is 1 mm. The hot-wire 
probe can be traversed in the three (x,y and z) directions continuously. The y- 
distributions of the mean velocity U(y) and the r.m.s. value u'(y) are simultaneously 
recorded on an XY recorder during each y-traverse. The hot-wire signal is stored in 
a data recorder. Flow visualizations are done by means of the smoke-wire technique 
to identify the three-dimensional flow structures. The smoke wire (or wires), stretched 
in the spanwise (z) direction, can be traversed in the x- and y-directions, and the cross- 
section view of the smoke pattern is made using a sheet of stroboscopic light. The 
visualization pictures are recorded by still camera shots (synchronized with the forcing 
signal) or a high-speed camera. 

The free-stream velocity U, is fixed at 4 m s-l. We measured carefully the time-mean 
velocity distributions V ( y )  at various x-stations in the laminar boundary layer without 
the acoustic forcing, and confirmed that Blasius flow developed from the vicinity of the 
leading edge, as seen from figure 2 which compares the measurement of the mean 
velocity U(y) at each x-station with the corresponding Blasius profile. At x = 300 and 
440 111111, the Reynolds number based on the displacement thickness RZ (the subscript 
L stands for the laminar flow without the forcing) is about 500 and 600 respectively. 
The critical Rr given by the Orr-Sommerfeld stability equation is 520. Note that 
according to the direct numerical simulation by Fasel & Konzelmann (1990) and the 
PSE (parabolized stability equations) calculation by Bertolotti, Herbert & Spalart 
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FIGURE 2. The y-distributions of mean velocity U at x = 60 mm (m), 120 mm (a), 200 mm (O), 
280 mm (A) and 400 mm (a). Solid curves represent the corresponding Blasius flow profiles. 

(1992), the non-parallel effects of the boundary layer decrease the critical RE slightly. 
The observations in the present study are focused on the flow up to x = 440 mm, at 
which the x-Reynolds number R, (= x U , / v  where v is the kinematic viscosity) is 
1.2 x lo5. The free-stream turbulence is about 0.3 YO of U ,  at the tunnel exit and 
increases downstream up to the order of 1 YO beyond x = 300 mm. This increase is due 
to the upper and lower mixing layers developing from the nozzle exit. Even under such 
rather strong disturbances, the boundary layer remains completely laminar throughout 
the observation region at the present low Reynolds numbers. Without forcing, no 
evidence for the occurrence (beginning) of transition can be found in the observation 
region. 

3. Excitation of hairpin eddies at the leading edge 
First a description of how the spike stages can be realized near the leading edge is 

given. When the acoustic forcing is weak, only a viscosity-conditioned wave (i.e. the 
origin of a Tollmien-Schlichting (T-S) wave), superposed on the sound-induced Stokes 
layer, is generated near the leading edge. To show such leading-edge receptivity, figure 
3 plots the x-distributions of u’ (the r.m.s. value of the u-fluctuation) at y = 0.5 mm 
(near the wall) and 5 mm (outside the boundary layer) for the case of weak excitation. 
Here the frequency of the acoustic forcing f is 50 Hz, whose non-dimensional value 
2nfv/UZ, is 290 x lop6. The u’ at y = 5 mm, i.e. the velocity component due to the 
radiated sound, accelerates around the sharp leading edge, and rapidly decreases in 
intensity downstream along the plate. Inside the boundary layer (at y = 0.5 mm), 
however, we can see some undulation in the x-distribution of u‘. The wavelength of 
the undulation is 30-35 mm. This is no doubt due to the superposition of T-S waves 
arriving in and generated in the leading-edge region because the r.m.s. amplitude of the 
u-fluctuation consisting of the stationary forcing field (sound with wavelength 6.8 m) 
and the (superposed) relatively weak T-S wave should undergo such an undulation 
with the T-S wavelength as explained by Nishioka & Morkovin (1986; see their figure 
4). Indeed, from the undulation wavelength (= 3&35 mm) and the frequency (50 Hz) 
the phase velocity of the superposed wave component is found to be about 0.4Um 
( = 1.6 m s-l), which corresponds to that of T-S wave. The superposed viscosity- 
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FIGURE 3. u’ versus x for the case of weak forcing (at 50 Hz): 0, y = 5 mm; 0, y = 0.6 mm. 

conditioned T-S wave decays quickly owing to a strong viscous effect near the leading 
edge, and the sound-induced Stokes layer alone is observed at the downstream station 
beyond x = 100 mm (R, = 2.8 x lo4), as seen in figure 4 which compares the y- 
distributions of the amplitude and phase of the u-fluctuation (the forcing frequency 
component) observed at x = 110, 120, 130 and 140 mm, with the y-distributions of the 
theoretical Stokes layer (induced by the oscillating free stream); the phase O(y) was 
measured by using a phase meter. The leading-edge receptivity mentioned is important 
for the appearance of T-S waves, but its detail is outside the scope of the present study 
which focuses on the subcritical transition. 

On increasing the forcing, a local separation occurs at the leading edge as already 
mentioned. In terms of timescale, the separation bubble is less than one third of the 
period of the forcing (at 50 Hz) and importantly it accompanies an intense thin shear 
layer away from the wall. The thin bubble shear layer is quite unstable (to high- 
frequency disturbances) and soon breaks down into discrete vortices, which quickly 
(almost at the same time as the shear layer rolls up) evolve into hairpin-shaped vortices. 
So by adjusting the intensity of the acoustic forcing, we can observe flow stages, which, 
as far as the waveforms of u-fluctuation are concerned, are similar to the one-spike 
stage and the two-spike stage observed in the experiments on the ribbon-induced 
transition in Blasius flow (Klebanoff et al. 1962; Kovasznay et al. 1962) and in plane 
Poiseuille flow (Nishioka et ul. 1980, 1981 ; Nishioka & Asai 1984). The one-spike stage 
and the two-spike stage thus realized near the leading edge are demonstrated in figure 
5 in terms of the waveforms of the u-fluctuation at x = 10 mm. Figures 6(u) and 6(6) 
also illustrate these two stages in terms of the instantaneous equi-shear contours (i.e. 
a(U+u)/ay = constant lines) at x = 10 and 30 mm, showing the formation of the 
bubble shear layer and its breakdown into discrete vortices which correspond to the 
high-frequency spikes in the waveforms of the u-fluctuation (figure 5 ) :  note that with 
the passage of hairpin eddies (high-frequency spikes), the near-wall flow is also highly 
disturbed. Here the flow is quite periodic near the leading edge, so we are able to obtain 
the instantaneous equi-shear contours by the periodic-sampling technique. We 
hereafter call these two flows the one-spike flow and the two-spike flow respectively. 
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FIGURE 4. The y-distributions of amplitude u’ and phase 8 of the u-fluctuation at x = 110 mm (O), 
120 mm (a), 130 mm (A) and 140 mm (0). Solid curves represent the corresponding distributions 
of the oscillating Stokes layer. 

To see the three-dimensional structure of the excited vortices, figures 7(a) and 7(b)  
respectively show the plan view and cross-section view of smoke in the one-spike flow 
(corresponding to figure 5 a). These pictures are taken not simultaneously but with the 
stroboscopic light being synchronized with the forcing signal so as to obtain the flow 
pattern at the same phase instance of the periodic forcing; the flow near the leading 
edge is almost periodic in time. The figure clearly shows the hairpin-shaped vortices 
resulting from the breakdown of the leading-edge bubble shear layer. Here the 
periodicity in the spanwise array of hairpin eddies is due to thin plastic tapes (0.05 mm 
thick) glued around the leading edge (every 6mm in the z-direction) as mentioned 
earlier. Without the leading-edge tapes, the spacing changes in the spanwise direction 
and varies in the range from 4 to 7 mm. In the one-spike flow, a single hairpin eddy 
appears in each cycle of the periodic forcing between the neighbouring tapes, while in 
the two-spike flow, hairpin eddies are generated not only between the tapes but also 
directly behind each tape as seen in the plan view of the smoke-wire visualization in 
the two-spike flow, figure 7(c). The equi-shear contours in figures 6(a) and 6(b) are 
obtained at the z-position between the tapes. 

Figure 7 (d) shows the visualization picture when the forcing is increased much 
more (larger than that of the two-spike flow by about 25% in terms of the u- 
fluctuation due to the radiated sound). The separation bubble appears for at most one 



Transition triggered by hairpin eddies 107 

(4 
1.2 I I 1 I 1 I I I I 

0 20 40 60 80 100 

. _  
1.2 

0.8 2 
\ h 

3 + 
b - 0.4 

I I I I I I I I I I I 
0 20 40 60 80 100 

f (ms) 
FIGURE 5. Waveforms of the u-fluctuation in the one-spike flow (a) and the two-spike flow (b). 
y = 1.1 mm (upper trace) and 0.3 mm (lower trace) in (a), y = 1.6 mm (upper) and 0.35 mm (lower) 
in (b). 

third of the period of the forcing signal, so the number of spikes or hairpin eddies 
(whose frequency is about 400 Hz) in one cycle is not increased by more than two even 
under strong forcing (at the present frequency 50 Hz). However, for stronger forcing, 
the hairpin eddies excited can get more energetic because the bubble shear layer is 
much further away from the wall and the vortices evolving from it tend to be more free 
of the viscous wall effect. This is understood from the comparison of the y-distributions 
of u’ at x = 10 mm for these three cases, shown in figure 8. Although the maximum 
r.m.s. values, uk, are almost the same, the y-position of the r.m.s. maximum becomes 
higher and moreover the total disturbance energy is apparently larger with increasing 
the forcing. In the next section, we examine the response of the boundary layer to the 
hairpin-shaped vortices excited in these cases to show the possibility of the subcritical 
transition and the related critical condition. 
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FIGURE 6.  Equi-shear contours at x = 10 mm (upper) and x = 30 mm (lower) for 
(a) the one-spike flow, (b) the two-spike flow. 

4. Disturbance growth a t  subcritical Reynolds numbers 
As seen in figure 4, the instantaneous u-fluctuation induced by the hairpin eddies is 

more than 50% of U, near the leading edge and thus quite large. However, the 
leading-edge-generated hairpin eddies (which we call the leading-edge hairpins for 
short) evolving from the thin bubble shear layer are so small in scale (their frequency 
is about 400 Hz) that they rapidly decay downstream due to viscous dissipation and 
diffusion. In terms of the waveform of the u-fluctuation, i.e. the high-frequency spikes, 
figure 9 demonstrates the decay of the leading-edge hairpins in the one-spike flow 
where a single hairpin eddy appears immediately downstream of the leading edge in 
each cycle of the acoustic forcing. The intensity decreases to one third from x = 10 to 
40mm, and we see only a faint remnant of the leading-edge hairpins beyond 
x = 100 mm. In this case, we observed that after the leading-edge hairpins decay, Blasius 
flow appears again together with the weak (two-dimensional) T-S wave. However, on 
increasing the forcing, the leading-edge hairpins become more energetic. Therefore 
they can survive further downstream and trigger the subcritical transition. To show 
this, figure 10 compares the flow developments in the three cases, i.e. the one-spike 
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FIGURE 7. Smoke-wire visualization of the leading-edge-generated hairpin eddies : (a, b) the one-spike 
flow (plan and cross-section view), (c) the two-spike flow, ( d )  the energetic two-spike flow. The smoke 
wire is set at (x ,y )  = (25, 2.5 mm) in the plan view, and at (x ,y )  = (20, 0.5 mm) in the cross-section 
view (x = 55 mm) in (b) .  
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FIGURE 8. Comparison of the r.m.s. intensity of the u-fluctuation u‘ at x = 10 mm. (a) the one-spike 
flow. (h)  the two-spike flow and ( c )  the energetic two-spike flow. e, at a z-position between 
ncighbouring tapes; 0. directly behind tape. 

flow, the two-spike flow and the two-spike flow with more energetic leading-edge 
hairpins (which we call the energetic two-spike flow), using side view pictures of 
smoke-wire visualization. In the two-spike flow, we see only the leading-edge hairpins 
in the whole observation region (up to x = 300 mm) as in the one-spike flow, while in 
the energetic two-spike flow we can see that successive growth of vortices occurs 
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FIGURE 9. Waveforms of the u-fluctuation (at y = 1 mm) in the one-spike flow. From top to 
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FIGURE 10. Smoke-wire visualizations of the one-spike flow (a), the two-spike flow (6) and the 
energetic two-spike flow (c). Stroboscopic light illuminates only a spanwise width of about 10 mm 
for these side-view pictures. Two smoke wires are set at (x ,y )  = (25, 0.5 mm) and (35, 2.5 mm). 
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FIGURE 1 1 .  Comparison of the development of uk among the one-spike flow (A), the two-spike 

flow (0) and the energetic two-spike flow (0). 

beyond x = 180 mm to lead to wall turbulence. These pictures clearly indicate the 
presence of the critical condition for the disturbance growth leading to the subcritical 
transition, and it will be examined below in detail. 

Figure 11 compares the development of the u-fluctuation in the one-spike, the two- 
spike and the energetic two-spike flows by plotting the maximum r.m.s. value u L / U ,  
against x. In all the cases, the u-fluctuation quickly decays until levelling off at around 
x = 100 mm (R,  = 2.8 x lo4) except for the wiggle around x = 60 mm; the wiggle is 
mainly due to the superposed sound. However, in the energetic two-spike flow, after 
levelling at a value of lo%, uk/U, then starts to grow beyond x = 140mm 
(R, = 3.9 x lo4). In the two-spike flow, u;/U, decays down to about 8 % at around 
x = 100 mm, and never starts to grow downstream in the subcritical region up to 
x = 300 mm (R,  = 8.3 x lo4), where RE is about 500, nearly at the critical for the linear 
instability. Thus the subcritical transition occurs only when u k / U ,  (mainly due to the 
disturbing leading-edge hairpins) is greater than the threshold of about 10 %. Of 
course, the intensity of the instantaneous u-fluctuation might be more important 
because around the critical station the hairpin eddies do not yet cover the whole 
period in time. So figure 12 illustrates the waveforms of the u-fluctuation at the critical 
station in the energetic two-spike flow. The instantaneous u-fluctuation is as large as 
20-30% of U ,  which is of almost the same order as that observed in the developed 
turbulent boundary layer. 

Then how does the disturbance growth occur? Up to x = 100 mm, the leading-edge 
hairpins are very active and can lift up the near-wall fluid both in the two-spike flow 
and the energetic two-spike flow. Beyond x = 100 mm, however, the leading-edge 
hairpins become weak and no remarkable near-wall activity is observed in the two- 
spike flow. On the other hand, figure 13(a, b) visualizes the flow development around 
the critical station in the energetic two-spike flow in detail. The smoke is released from 
two y-positions, i.e. at the boundary-layer edge and near the wall (similar to the 
visualization in figure 10) to give information on the decay of the leading-edge hairpins 
as well as the associated near-wall activity. As seen in the figure, the leading-edge 
hairpins are still active beyond x = 100mm in the energetic two-spike flow. 
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FIGURE 12. Waveforms of the u-fluctuation at x = 140 mm for the energetic two-spike flow. 

(a) y = 3.8 mm, (b) 1.5 mm and (c) 0.9 mm. 

Importantly, the lifted-up smoke released from x = 90 mm shows that, associated with 
the passage of the leading-edge hairpins, the shear layer near the wall starts to develop 
into discrete vortices at around x = 150 mm. Indeed, the cross-section view of the near- 
wall flow given in figure 13 (b), taken at an instant half a period after the passage of the 
heads of the leading-edge hairpins (visualized in figure 13 a), indicates the appearance 
of many mushrooms, which no doubt shows the development of three-dimensional 
wall shear layers with streamwise vortices. They evolve into hairpin eddies downstream, 
which we call ‘wall hairpins’ (Asai & Nishioka 1990). Beyond x = 200 mm, the plan 
view of a smoke-wire visualization, figure 14(a), shows no laminar region over the 
whole spanwise extent, which results from the break-up of the wall shear layers into 
hairpin eddies as seen in the side-view picture, figure 14(b). In this regard, Smith and 
his colleagues (Smith et al. 1991 ; Haidari & Smith 1994) examined the regeneration 
process of hairpin vortices in detail through exciting single hairpin vortices by means 
of controlled injection of wall fluid through a streamwise slot, and revealed that 
secondary hairpin vortices (wall hairpins in our case) are generated between the legs of 
the primary hairpins (corresponding to the leading-edge hairpins) as well as directly 
behind each leg through a process of vortex-surface interaction. They proposed that 
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FIGURE 13. Smoke-wire visualization of the energetic two-spike flow: (u) side view, (b) cross-section 
view (at x = 150 mm). Two smoke wires are set at ( x , y )  = (90, 0.5 mm) and (100, 3.5 mm). 

FIGURE 14. Smoke-wire visualization of the energetic two-spike flow: (a) plan view, (b)  side view. A 
smoke-wire is set at (x ,y )  = (180, 3.5 mm) in (a), and two smoke wires are set at (x ,y )  = (180, 
0.5 mm) and (190, 4.0 mm) in (b ) .  



Transition triggered by hairpin eddies 115 

x (mm) 
FIGURE 15. Regeneration of hairpin eddies beyond the critical station. illustrated by a sequence of 
side-view pictures taken with high-speed camera. Time interval is 2.5 ins between frames. T w o  smoke 
wires are set at ( x ,  y )  = (90, 0.5 mm) and (100, 3 .5  mm). 

the adverse pressure gradient imposed by the primary hairpins causes the eruption (lift- 
up) of low-speed fluid leading to the formation of secondary hairpins. I n  our case too, 
the successive growth of the wall shear layer (lifted up by leading-edge hairpins) into 
wall hairpins starts to occur before being caught up by the leading-edge hairpins (of the 
next cycle) coming from upstream, suggesting a local instability of the disturbed wall 
shear layer itself. It should be noted that the heads of the leading-edge hairpins move 
at  a speed of about O.9Vm, while the near-wall eddies move at OSU, LO 0.6U,. Such an 
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instability responsible for the regeneration of wall hairpins has to occur within the 
viscous diffusion time as discussed below. 

In order to analyse the growth (or regeneration) of wall hairpins, a time sequence of 
the flow development around the critical station in the energetic two-spike flow is 
visualized in figure 15 by using a high-speed camera system. The photos are taken at 
intervals of 1/400 s, one eighth of the period of the acoustic forcing, and nine frames 
from top to bottom complete one whole cycle of the forcing (at 50 Hz). Observe the 
near-wall smoke released from y = 0.5 mm (at the height of the momentum thickness). 
Soon after the passage of the leading-edge hairpins, the near-wall smoke is lifted up to 
the boundary-layer edge ( y  z 4 mm) within a time interval of about 5/400 s ( 5  frames), 
which gives us a rough estimation of the u-fluctuation associated with the near-wall 
activity, namely about the order of 5 O h  of U ,  or more. As seen from the cross-section 
view (figure 13b), the u-fluctuation is caused by the near-wall streamwise vortices 
(probably induced by hairpin eddies coming from upstream and/or their legs 
themselves). So, if the streamwise vortices are active, the wall shear layer is lifted up 
away from the wall, and simultaneously is stretched in the lateral (spanwise) direction. 
The resulting intense wall shear layer is free from the wall effect and may become 
unstable. For the regeneration of wall hairpins, however, such a wall shear layer (with 
streamwise vortices) has to break down before decaying due to the effects of viscous 
diffusion and dissipation. In the present case, the timescale required for the generation 
of wall hairpins is 5/400 s, which is of the same order as the viscous diffusion time e 2 / v  
( z  17 ms) around the critical station when we take the momentum thickness 0 (about 
0.5 mm) as the measure of wall-shear-layer thickness. Thus, the v-fluctuation (5  % of 
U,) is really the critical intensity for the growth or regeneration of wall hairpins. We 
also made a similar analysis of visualization data in the two-spike flow where the near- 
wall flow is not active even beyond the above-mentioned critical station, and found that 
the intensity of the u-fluctuation has already decreased down to 1 % of U ,  beyond 
x = 100 mm. With these observations, the present critical intensity of the u-fluctuation 
may be written as u8/v > 8, since 8 /0  z 8 for Blasius flow. 

5. Development of wall turbulence structure 
As observed in the preceding section, the successive generation (or regeneration) of 

hairpin eddies is responsible for the occurrence of subcritical transition. In order to 
further clarify the critical Reynolds number for the occurrence of the subcritical 
transition, we measure the coefficient of local skin friction, C;, at various x-stations. 
Here C; is obtained from the mean velocity distribution U ( y )  (and aU/ay at the wall) 
at each x-station. Thus, the hot-wire probe is carefully traversed towards the wall to 
as close as possible: the thickness of the viscous sublayer is about 0.5 mm at 
x = 440 mm. Also note that for each y-traverse, the wall position ( y  = 0) is precisely 
determined by measuring the laminar Blasius flow profile at each x-station without the 
forcing. The result is plotted against the x-Reynolds number R, in figure 16. C; starts 
to deviate from the laminar value at around R, = 2.8 x lo4 (x = 100 mm) and increases 
beyond R, = 3 . 9 ~  lo4 (x = 140mm) to approach that of the wall turbulence 
downstream. This x-station (R, = 3.9 x lo4) corresponds to the critical station for uk 
to start to increase downstream. Indeed, it is after the appearance and growth of wall 
hairpins (mushrooms in the cross-section smoke view) that the local skin friction C; 
starts to increase downstream. This indicates an important role of wall hairpins in the 
momentum transfer towards the wall: this has also been found in our previous 
experiment on the ribbon-induced transition (Nishioka et al. 1980; Nishioka & Asai 
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FIGURE 16. Local skin friction C; versus R,: 0, energetic two-spike flow; A, undisturbed flow 
without acoustic forcing; -, Blasius flow; ---, developed turbulent flow (Prandtl). 
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FIGURE 17. Momentum thickness Reynolds number R, versus R,. Solid curve 

represents R,  for undisturbed Blasius flow. 

1984). In the present experiment on the subcritical boundary-layer transition, it should 
be noted that according to the hot-wire signals as well as a number of visualization 
photographs, the near-wall activity is slightly intermittent around the critical station 
even in the energetic two-spike flow. 

Figure 17 plots the momentum-thickness Reynolds number Re against R, in the 
energetic two-spike flow, where the momentum thickness 0 is calculated from the y- 
distribution of time-mean velocity U(y)  at each x-station. Owing to the generation of 
the vortices at the leading edge, the momentum thickness is slightly larger than that of 
the undisturbed Blasius flow (represented by the solid curve) even at the x-stations 
below the critical: Re is greater than Re, by 20-25 at the x-stations below 
R, = 3.9 x lo4. Even in terms of Re, the transition Reynolds number (x 150) is less 
than the critical value calculated from the Om-Sommerfeld stability equation, 
R, 7 200. Here it is also worth noting that the critical Re found in the present 
expenment is very close to the minimum transition R, (x 130) obtained in plane 
Poiseuille flow under highly disturbed inlet flow conditions (Nishioka & Asai 1985). 
The stability characteristics of the linear instability (including the critical Reynolds 
number) are very sensitive to the velocity distribution of the basic flow U(y);  see, for 
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FIGURE 18. The y-distributions of time-mean velocity U in (a) and r.m.s. intensity u‘ in (b):  

5.62 log(yu,/v)+S.O; . * ** . . ,  U/U, = yu,/v.  
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instance, Drazin & Reid (1981, figure 4.24). On the other hand, the disturbance growth 
in the present subcritical transition is due to the break-up of the local wall shear layer 
generated by the primary hairpin eddies (in particular, their legs) so that the thickness 
of the wall shear layer is of vital importance for the onset of the transition. Therefore, 
considering that the momentum thickness is a measure of wall shear layer thickness, 
the coincidence of the minimum transition R, for Blasius flow and plane Poiseuille flow 
seems to be quite reasonable. 

Figure 18 shows the development of wall turbulence structure in terms of U(y) and 
u’(y) at R, = 0 . 8 9 ~  lo5, 1 . 0 ~  lo5, 1.1 x lo5 and 1 . 2 ~  lo5 (x = 320, 360, 400 and 
440mm) where the C;  approaches that of the wall turbulence. All the quantities 
are non-dimensionalized with the local friction velocity u, and the kinematic viscosity 
v. The y-distributions of u’ near the wall are similar to each other at these four stations 
with a maximum at yuJv = 15 (that for developed wall turbulence), and thus it seems 
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FIGURE 19. Cross-section view of near-wall flow. (a) x = 110 mm (R, = 3.1 x lo4), 
(b) x = 200 mm (R, = 5.6 x lo4), (c) x = 320 mm (R, = 8.9 x lo4). 

that the wall turbulence structure has already been established near the wall at these 
stations. As R, increases from 0.89 x lo5 to 1.2 x lo5, the turbulent region extends to 
the larger y-region. However, it is beyond R, = 1.1 x lo5 (about 350 in terms of RB) that 
the y-distribution of U/uI  starts to exhibit a log-law (Coles & Hirst 1968). Even at 
R, = 1.2 x lo5, the log-law region is only limited and the wall region is overlapped by 
the outer intermittent region. 

We show another important result on the development of the wall turbulence 
structure in this transition in figure 19 which compares the visualization pictures at 
three cross-sections, x = 110,200 and 320 mm (R, = 3.1 x lo4, 5.6 x lo4 and 8.9 x lo4). 
In each photo, the smoke was released from the x-station 50mm upstream of the 
observation x to visualize active vortical structures at each station. We can see a 
continual development of the mushrooms (caused by a pair of counter-rotating 
streamwise vortices) with increasing their spanwise scale. The active mushrooms reach 
the boundary-layer edge within the distance of 50 mm (about 10 times the boundary- 
layer thickness). These correspond to the lifted-up wall hairpins seen in the side-view 
picture, figure 14 (b). Thus, together with the corresponding side-view pictures, these 
visualizations reveal that the successive evolution of wall shear layers into wall hairpins 
can lead to wall turbulence. Even at x = 320 mm where the flow starts to exhibit the 
wall turbulence structure, distinct mushrooms moving towards the boundary layer 
edge are regularly aligned, with a spanwise spacing of 5-10 mm, though most of the 
lifted smoke (caused by streamwise vortices) is skewed or asymmetric. From these 
visualization data, we measure the spanwise spacing of mushrooms (or lifted-up smoke 
associated with streamwise vortices) h at various x-stations and obtain its histogram as 



120 M .  Asui and M .  Nishioka 

a . c 

I2 

0 5 x 104 

Rx 

1 xi05 

0 5 x 104 1 xi05 

Rx 

FIGURE 20. Development of mean spanwise spacing A. (a) versus R,, (b)  xu,/v versus R,. 
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well as the mean value h; the number of sample data points is more than 200. Figure 
20(u) plots the mean value h against R,, showing that the spacing h is as small as 
3 mm (i.e. half the spacing of the leading-edge tapes) near the leading edge and increases 
up to about 7 mm through the transition process. The downstream increase of x seems 
to be well correlated with the growth of the laminar (Blasius) boundary layer due to 
viscous diffusion (represented by the solid curve), i.e. 2 a ( V X / U , J ’ ~ ,  in particular 
around the critical station. When we measure the spacing in local wall units, however, 

tends to approach a constant value at the downstream station, as shown in figure 
20(b). Up to the critical station (R, = 3.9 x lo4), h remains at about 50v/u,, half the 
well-known mean spacing of the wall streaks in developed wall turbulence, so that 
initially the wall shear layers are strongly influenced by viscosity. Beyond the critical 
station where the near-wall flow becomes active, h increases up to the asymptotic value 
of lOOv/u, beyond R, = 8.9 x lo4. Here, we of course have to understand that the 
smoke patterns do not exactly correspond to the vortical structures at the observation 
x and the spacing A measured from the cross-section view might be slightly smaller than 
the real spacing at each station owing to time history of the smoke, However, the result 
clearly indicates that the wall shear layers themselves successively grow, increasing in 
scale, and finally evolve into hairpin eddies and/or streamwise vortices of the 
characteristic scale typical for the developed wall turbulence, i.e. hu,/v = 100. 
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6.  Concluding remarks 
In the present study, we have examined the subcritical transition triggered by ener- 

getic hairpin eddies. Even in the presence of highly disturbing hairpin eddies, the 
boundary layer is found to be stable below the x-Reynolds number R, = 2.8 x lo4 in the 
sense that no active growth of the disturbed wall shear layers occurs. On the other 
hand, beyond R, = 3.9 x lo4, the wall shear layers with streamwise vortices, which 
appear after the passage of the leading-edge generated hairpin eddies, become active 
and themselves evolve into hairpin eddies in succession. Correspondingly, the local skin 
friction C; increases beyond R, = 3.9 x lo4. The modification of the mean flow U due 
to the vortex excitation is not large below R, = 3.9 x lo4 in terms of the difference 
between ROL and R,: for instance, R,, and R, are respectively 127 and 150 at 
R, = 3.9 x lo4. So, we may surely say that the transition in the Blasius boundary layer 
really occurs at the subcritical Reynolds numbers. In terms of u- and u-fluctuations, the 
intensity of the near-wall activity triggering the growth of the wall shear layer around 
the critical station mentioned above is almost the same as that of fully turbulent cases. 
The critical intensity of the u-fluctuation may be written as o O / u  = 8. The momentum- 
thickness Reynolds number R, is about 150 (RoL = 127 for Blasius flow) at the critical 
station for the regeneration of hairpin eddies mentioned above, and 350 for the 
appearance of a log-law velocity distribution (at R, = 1.1 x lo5). 

The successive growth of wall hairpins is probably due to an inflectional instability 
of the three-dimensional wall shear layer lifted up by the streamwise vortices which are 
the legs of hairpin eddies or the secondary vortices induced by them, though the 
development of the wall shear layer with streamwise vortices is strongly influenced by 
viscosity at the subcritical Reynolds numbers. Indeed, the growth of the wall shear 
layer is highly dependent on the intensity of the disturbing hairpin eddies. It is also 
found that beyond the critical station, the spanwise scale of the active wall shear layers 
in wall units is increased downstream, finally reaching hu,/u = 100 (beyond 
R, = 8.9 x lo4) in terms of the mean spanwise distance between the neighbouring 
ejection (x). On the basis of the present results for the subcritical transition in Blasius 
flow, we may say that the regeneration of wall hairpins can generate and sustain wall 
turbulence. 
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